Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2311390121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593075

RESUMO

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.


Assuntos
Archaea , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Archaea/metabolismo , Fotossíntese , Glicolatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Oxigenases/metabolismo , Pentoses
2.
Bioresour Technol ; 398: 130531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447620

RESUMO

Glycolic acid is widely employed in chemical cleaning, the production of polyglycolic acid-lactic acid, and polyglycolic acid. Currently, the bottleneck of glycolate biosynthesis lies on the imbalance of metabolic flux and the deficiency of NADPH. In this study, a dynamic regulation system was developed and optimized to enhance the metabolic flux from glucose to glycolate. Additionally, the knockout of transhydrogenase (sthA), along with the overexpression of pyridine nucleotide transhydrogenase (pntAB) and the implementation of the Entner-Doudoroff pathway, were performed to further increase the production of the NADPH, thereby increasing the titer of glycolate to 5.6 g/L. To produce glycolate from corn stover hydrolysate, carbon catabolite repression was alleviated and glucose utilization was accelerated. The final strain, E. coli Mgly10-245, is inducer-free, achieving a glycolate titer of 46.1 g/L using corn stover hydrolysate (77.1 % of theoretical yield). These findings will contribute to the advancement of industrial glycolate production.


Assuntos
Escherichia coli , NADP Trans-Hidrogenases , Escherichia coli/genética , Escherichia coli/metabolismo , Zea mays/metabolismo , NADP/metabolismo , Glicolatos/metabolismo , NADP Trans-Hidrogenases/metabolismo , Ácido Poliglicólico/metabolismo , Glucose/metabolismo , Engenharia Metabólica
3.
J Biotechnol ; 381: 76-85, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190849

RESUMO

The physiology of different Escherichia coli stains was analyzed for growth with glycolate as a potentially promising sustainable sole source of carbon and energy. Different E. coli strains showed large differences regarding lag phases after provision of glycolate. Whereas E. coli W showed fast adaptation, E. coli BW25113, JM101, and BL21 (DE3) needed extensive time for adaption (up to 30 generations) until the attainable µmax was reached, which, at 30 °C, amounted to 0.20-0.25 h-1 for all strains. The overexpression of genes encoding glycolate degradation did neither overcome the need for adaptation of E. coli BL21 (DE3) nor improve growth of E. coli W. Rather, high level expression of proteins involved in uptake and initial degradation steps had an adverse effect on growth. Overall, the results show a promising capacity of E. coli strains for growth on glycolate.


Assuntos
Carbono , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Carbono/metabolismo , Glicolatos/metabolismo
4.
Environ Sci Pollut Res Int ; 31(4): 6094-6105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147256

RESUMO

Fluroxypyr-meptyl (FLUME) is heterocyclic herbicide with internal absorption and transmission characteristics. Owing to its low cost and rapid efficacy, it has been widely used to control broad-leaved weeds in wheat, corn, and rice fields. However, the uptake, translocation, accumulation, and metabolism of FLUME in rice seedlings and the extent of oxidative stress induced by it remain largely unknown, which consequently restricts the comprehensive risk assessment of FLUME residues in the environment during rice production. Hence, we systematically investigated the growth and physiological responses of rice to FLUME and analyzed its uptake, translocation, accumulation, and metabolism in rice seedlings. The results indicated that under 0-0.12 mg/L FLUME treatment, only a small proportion of FLUME was translocated upward and accumulated in rice shoots following absorption via roots, with all the translocation factor values being < 1. Moreover, the distribution and enrichment ability of FLUME in rice seedlings were greater in roots than in shoots. Furthermore, we revealed that FLUME accumulation in rice seedlings evidently inhibited their growth and activated the defense system against oxidative stress, with an increase in the activity of antioxidant and detoxifying enzymes. In addition, multiple metabolic reactions of FLUME were observed in rice seedlings, including dehalogenation, hydroxylation, glycosylation, acetylation, and malonylation. Our study provides systematic insights into the uptake, translocation, accumulation, and metabolism of FLUME in rice seedlings as well as the oxidative stress induced by FLUME accumulation, which can help improve FLUME applications and environmental risk assessments in crops.


Assuntos
Oryza , Plântula , Plântula/metabolismo , Oryza/química , Glicolatos/análise , Glicolatos/metabolismo , Estresse Oxidativo , Raízes de Plantas/química
5.
Curr Opin Biotechnol ; 85: 103047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128199

RESUMO

Single-carbon (C1) biorefinery plays a key role in the consumption of global greenhouse gases and a circular carbon economy. Thereby, we have focused on the valorization of C1 compounds (e.g. methanol, formaldehyde, and formate) into multicarbon products, including bioplastic monomers, glycolate, and ethylene glycol. For instance, methanol, derived from the oxidation of CH4, can be converted into glycolate, ethylene glycol, or erythrulose via formaldehyde and glycolaldehyde, employing C1 and/or C2 carboligases as essential enzymes. Escherichia coli was engineered to convert formate, produced from CO via CO2 or from CO2 directly, into glycolate. Recent progress in the design of biotransformation pathways, enzyme discovery, and engineering, as well as whole-cell biocatalyst engineering for C1 biorefinery, was addressed in this review.


Assuntos
Carbono , Metanol , Metanol/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Etilenoglicol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Formiatos/metabolismo , Formaldeído/metabolismo , Glicolatos/metabolismo
6.
Sci Rep ; 13(1): 19686, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952078

RESUMO

Glycolate oxidase (GLO) is an FMN-containing enzyme localized in peroxisomes and performs in various molecular and biochemical mechanisms. It is a key player in plant glycolate and glyoxylate accumulation pathways. The role of GLO in disease and stress resistance is well-documented in various plant species. Although studies have been conducted regarding the role of GLO genes from spinach on a microbial level, the direct response of GLO genes to various stresses in short-season and leafy plants like lettuce has not been published yet. The genome of Lactuca sativa cultivar 'Salinas' (v8) was used to identify GLO gene members in lettuce by performing various computational analysis. Dual synteny, protein-protein interactions, and targeted miRNA analyses were conducted to understand the function of GLO genes. The identified GLO genes showed further clustering into two groups i.e., glycolate oxidase (GOX) and hydroxyacid oxidase (HAOX). Genes were observed to be distributed unevenly on three chromosomes, and syntenic analysis revealed that segmental duplication was prevalent. Thus, it might be the main reason for GLO gene diversity in lettuce. Almost all LsGLO genes showed syntenic blocks in respective plant genomes under study. Protein-protein interactions of LsGLO genes revealed various functional enrichments, mainly photorespiration, and lactate oxidation, and among biological processes oxidative photosynthetic carbon pathway was highly significant. Results of in-depth analyses disclosed the interaction of GLO genes with other members of the glycolate pathway and the activity of GLO genes in various organs and developmental stages in lettuce. The extensive genome evaluation of GLO gene family in garden lettuce is believed to be a reference for cloning and studying functional analyses of GLO genes and characterizing other members of glycolate/glyoxylate biosynthesis pathway in various plant species.


Assuntos
Jardins , Lactuca , Lactuca/genética , Lactuca/metabolismo , Plantas/metabolismo , Glicolatos/metabolismo , Glioxilatos
7.
Toxicol Lett ; 379: 48-55, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958672

RESUMO

Diethylene glycol (DEG) mass poisonings have resulted from ingestion of adulterated pharmaceuticals, leading to proximal tubular necrosis and acute kidney injury. Diglycolic acid (DGA), one of the primary metabolites, accumulates greatly in kidney tissue and its direct administration results in toxicity identical to that in DEG-treated rats. DGA is a dicarboxylic acid, similar in structure to Krebs cycle intermediates such as succinate. Previous studies have shown that DGA is taken into kidney cells via the succinate-related dicarboxylate transporters. These studies have assessed whether the DGA that is taken up by primary cultures of human proximal tubule (HPT) cells is effluxed. In addition, a possible mechanism for efflux, via organic anion transporters (OATs) that exchange external organic anions for dicarboxylates inside the cell, was assessed using transformed cell lines that actively express OAT activities. When HPT cells were cultured on membrane inserts, then loaded with DGA and treated with the OAT4/5 substrate estrone sulfate or the OAT1/3 substrate para-aminohippurate, no DGA efflux was seen. A repeat of this experiment utilizing RPTEC/TERT1 cells with overexpressed OAT1 and OAT3 had similar results. In these cells, but not in HPT cells, co-incubation with succinate increased the uptake of PAH, confirming the presence of OAT activity in the RPTEC/TERT1 cells. Thus, despite OATs stimulation in cells with OAT activity, there was little to no efflux of DGA from the cells. This study concluded that DGA is poorly transported out of cells and that stimulation of OAT transporters is not a viable target for reducing DGA accumulation in cells.


Assuntos
Glicolatos , Túbulos Renais Proximais , Ratos , Humanos , Animais , Túbulos Renais Proximais/metabolismo , Glicolatos/toxicidade , Glicolatos/metabolismo , Succinatos/metabolismo , Ácido Succínico/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo
8.
Appl Microbiol Biotechnol ; 106(9-10): 3539-3554, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35511277

RESUMO

As an alternative to chemical building blocks derived from algal biomass, the excretion of glycolate has been proposed. This process has been observed in green algae such as Chlamydomonas reinhardtii as a product of the photorespiratory pathway. Photorespiration generally occurs at low CO2 and high O2 concentrations, through the key enzyme RubisCO initiating the pathway via oxygenation of 1.5-ribulose-bisphosphate. In wild-type strains, photorespiration is usually suppressed in favour of carboxylation due to the cellular carbon concentrating mechanisms (CCMs) controlling the internal CO2 concentration. Additionally, newly produced glycolate is directly metabolized in the C2 cycle. Therefore, both the CCMs and the C2 cycle are the key elements which limit the glycolate production in wild-type cells. Using conventional crossing techniques, we have developed Chlamydomonas reinhardtii double mutants deficient in these two key pathways to direct carbon flux to glycolate excretion. Under aeration with ambient air, the double mutant D6 showed a significant and stable glycolate production when compared to the non-producing wild type. Interestingly, this mutant can act as a carbon sink by fixing atmospheric CO2 into glycolate without requiring any additional CO2 supply. Thus, the double-mutant strain D6 can be used as a photocatalyst to produce chemical building blocks and as a future platform for algal-based biotechnology. KEY POINTS: • Chlamydomonas reinhardtii cia5 gyd double mutants were developed by sexual crossing • The double mutation eliminates the need for an inhibitor in glycolate production • The strain D6 produces significant amounts of glycolate with ambient air only.


Assuntos
Chlamydomonas reinhardtii , Biotecnologia , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Glicolatos/metabolismo , Fotossíntese , Plantas/metabolismo
9.
Acta Crystallogr D Struct Biol ; 78(Pt 4): 472-482, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362470

RESUMO

Bisphosphoglycerate mutase (BPGM) is an erythrocyte-specific multifunctional enzyme that is responsible for the regulation of 2,3-bisphosphoglycerate (2,3-BPG) in red blood cells through its synthase and phosphatase activities; the latter enzymatic function is stimulated by the endogenous activator 2-phosphoglycolate (2-PG). 2,3-BPG is a natural allosteric effector of hemoglobin (Hb) that is responsible for decreasing the affinity of Hb for oxygen to facilitate tissue oxygenation. Here, crystal structures of BPGM with 2-PG in the presence and absence of 3-phosphoglycerate are reported at 2.25 and 2.48 Šresolution, respectively. Structure analysis revealed a new binding site for 2-PG at the dimer interface for the first time, in addition to the expected active-site binding. Also, conformational non-equivalence of the two active sites was observed as one of the sites was found in an open conformation, with the residues at the active-site entrance, including Arg100, Arg116 and Arg117, and the C-terminus disordered. The kinetic result is consistent with the binding of 2-PG to an allosteric or noncatalytic site as well as the active site. This study paves the way for the rational targeting of BPGM for therapeutic purposes, especially for the treatment of sickle cell disease.


Assuntos
Bisfosfoglicerato Mutase , Glicolatos , Sítios de Ligação , Glicolatos/metabolismo , Monoéster Fosfórico Hidrolases
10.
Adv Sci (Weinh) ; 9(4): e2103265, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34904402

RESUMO

Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Cálcio/metabolismo , Glicolatos/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Isquemia Encefálica/metabolismo , Dessecação , Modelos Animais de Doenças , Glicolatos/administração & dosagem , Glicolatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Traumatismo por Reperfusão/metabolismo , Suínos
11.
Plant Sci ; 314: 111103, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895540

RESUMO

Photorespiration accounts for 20-50 % reduction in grain yield in C3 crops. The process is essential to remove 2-phosphoglycolate produced due to the oxygenation activity of the ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) enzyme. Attempts were made to improve photosynthesis through enriched CO2 concentration by installing numerous photorespiratory bypass modules in the chloroplast of several crops. In this study, we have introduced Escherichia coli glycolate catabolic pathway (ECGC) into rice chloroplast to bypass photorespiration partially (PB) or completely (FB). Five genes encoding glyoxylate carboligase (GCL), tartronic semialdehyde reductase (TSR), and three subunits of glycolate dehydrogenase (GDH) were introduced to get FB plants, whereas only the three subunits of GDH were introduced to get PB plants. Southern analysis confirmed stable integration of the transgenes and their expression was confirmed by RT-qPCR analysis in the T3 progenies. Both FB and PB transformed lines exhibited increased photosynthetic efficiency, biomass, and grain yield than wild type (WT) with empty vector control. The introduction of ECGC pathway favoured the carboxylase activity of RuBisCO while decreasing its oxygenase activity fostering the functioning of Calvin-Benson cycle and resulting in an increased carbon-assimilation that was manifested in their superior architecture and harvest index. These findings will support rice and related cereal crop breeding programs to increase yield under elevated temperature and arid conditions.


Assuntos
Cloroplastos/metabolismo , Glicolatos/metabolismo , Redes e Vias Metabólicas/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Fotossíntese/fisiologia , Biomassa , Produção Agrícola , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia
12.
Biotechnol Bioeng ; 118(12): 4699-4707, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34491579

RESUMO

Glycolate is a bulk chemical with wide applications in the textile, food processing, and pharmaceutical industries. Glycolate can be produced from glucose via the glycolysis and glyoxylate shunt pathways, followed by reduction to glycolate. However, two problems limit the productivity and yield of glycolate when using glucose as the sole carbon source. The first is a cofactor imbalance in the production of glycolate from glucose via the glycolysis pathway, since NADPH is required for glycolate production, while glycolysis generates NADH. To rectify this imbalance, the NADP+ -dependent glyceraldehyde 3-phosphate dehydrogenase GapC from Clostridium acetobutylicum was introduced to generate NADPH instead of NADH in the oxidation of glyceraldehyde 3-phosphate during glycolysis. The soluble transhydrogenase SthA was further eliminated to conserve NADPH by blocking its conversion into NADH. The second problem is an unfavorable carbon flux distribution between the tricarboxylic acid cycle and the glyoxylate shunt. To solve this problem, isocitrate dehydrogenase (ICDH) was eliminated to increase the carbon flux of glyoxylate and thereby improve the glycolate titer. After engineering through the integration of gapC, combined with the inactivation of ICDH, SthA, and by-product pathways, as well as the upregulation of the two key enzymes isocitrate lyase (encoding by aceA), and glyoxylate reductase (encoding by ycdW), the glycolate titer increased to 5.3 g/L with a yield of 1.89 mol/mol glucose. Moreover, an optimized fed-batch fermentation reached a titer of 41 g/L with a yield of 1.87 mol/mol glucose after 60 h.


Assuntos
Escherichia coli , Glicolatos , Engenharia Metabólica/métodos , Proteínas de Bactérias/genética , Clostridium acetobutylicum/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Glicolatos/análise , Glicolatos/metabolismo , Redes e Vias Metabólicas/genética
13.
Oxid Med Cell Longev ; 2021: 5834418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257812

RESUMO

Despite recent advancements in cisplatin (cis-diamminedichloroplatinum II) and other platinum-based chemotherapeutic drugs for treating solid tumors, their uses are limited by either in terms of toxicity and/or acquired drug resistance. These side effects have a dangerous problem with higher dose for severe patients. To overcome the low therapeutic ratio of the free drug, a polymeric nanoparticle drug delivery system has been explored promoting delivery of cisplatin to tumors. Recently, the applications of nanoparticles (NPs) have been underlined for encouraging the effects of chemotherapeutic drugs in cancerous cells. The intention of this project is to assess the potential of poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) for enhancing the effects of anticancer drug cisplatin. For the purpose, we have synthesized PLGA-cisplatin nanoparticles for increasing its bioavailability and studied the comparative cytotoxicity of free cisplatin and PLGA-cisplatin against MCF-7 cancer cell lines and HEK-293 normal cell lines. We have also analyzed the hallmarks of PLGA-cisplatin-induced apoptosis. The outcomes of this study may provide the possibility of delivery of anticancer drug to their specific site, which could minimize toxicity and optimize the drug efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Cisplatino/uso terapêutico , Glicolatos/metabolismo , Poliésteres/metabolismo , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Humanos
14.
Appl Environ Microbiol ; 87(12): e0011321, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33837017

RESUMO

Glycolate is widely used in industry, especially in the fields of chemical cleaning, cosmetics, and medical materials, and has broad market prospects for the future. Recent advances in metabolic engineering and synthetic biology have significantly improved the titer and yield of glycolate. However, an expensive inducer was used in previous studies, which is not feasible for use in large-scale industrial fermentations. To constitutively biosynthesize glycolate, the expression level of each gene of the glycolate synthetic pathway needs to be systemically optimized. The main challenge of multigene pathway optimization is being able to select or screen the optimum strain from the randomly assembled library by an efficient high-throughput method within a short time. To overcome these challenges, we firstly established a glycolate-responsive biosensor and developed agar plate- and 48-well deep-well plate-scale high-throughput screening methods for the rapid screening of superior glycolate producers from a large library. A total of 22 gradient-strength promoter-5'-untranslated region (UTR) complexes were randomly cloned upstream of the genes of the glycolate synthetic pathway, generating a large random assembled library. After rounds of screening, the optimum strain was obtained from 6 × 105 transformants in a week, and it achieved a titer of 40.9 ± 3.7 g/liter glycolate in a 5-liter bioreactor. Furthermore, high expression levels of the enzymes YcdW and GltA were found to promote glycolate production, whereas AceA has no obvious impact on glycolate production. Overall, the glycolate biosensor-based pathway optimization strategy presented in this work provides a paradigm for other multigene pathway optimizations. IMPORTANCE The use of strong promoters, such as pTrc and T7, to control gene expression not only needs the addition of expensive inducers but also results in excessive protein expression that may result in unbalanced metabolic flux and the waste of cellular building blocks and energy. To balance the metabolic flux of glycolate biosynthesis, the expression level of each gene needs to be systemically optimized in a constitutive manner. However, the lack of high-throughput screening methods restricted glycolate synthetic pathway optimization. Our work firstly established a glycolate-response biosensor, and agar plate- and 48-well plate-scale high-throughput screening methods were then developed for the rapid screening of optimum pathways from a large library. Finally, we obtained a glycolate-producing strain with good biosynthetic performance, and the use of the expensive inducer isopropyl-ß-d-thiogalactopyranoside (IPTG) was avoided, which broadens our understanding of the mechanism of glycolate synthesis.


Assuntos
Proteínas de Bactérias/genética , Técnicas Biossensoriais , Escherichia coli/genética , Glicolatos/metabolismo , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Escherichia coli/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Ensaios de Triagem em Larga Escala , Engenharia Metabólica , Plasmídeos , Regiões Promotoras Genéticas
15.
Biochem Biophys Res Commun ; 551: 161-167, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33740623

RESUMO

Physiological oxygen concentration (physioxia) ranges from 1 to 8% in human tissues while many researchers cultivate mammalian cells under an atmospheric concentration of 21% (hyperoxia). Oxygen is one of the significant gases which functions in human cells including energy production in mitochondria, metabolism in peroxidase, and transcription of various genes in company with HIF (Hypoxia-inducible factors) in the nucleus. Thus, mammalian cell culture should be deliberated on the oxygen concentration to mimic in vivo physiology. Here, we studied if the cultivation of human skin cells under physiological conditions could affect skin significant genes in barrier functions and dermal matrix formation. We further examined that some representative active ingredients in dermatology such as glycolic acid, gluconolactone, and salicylic acid work in different ways depending on the oxygen concentration. Taken together, we present the importance of oxygen concentration in skin cell culture for proper screening of novel ingredients as well as the mechanistic study of skin cell regulation.


Assuntos
Hidroxiácidos/farmacologia , Oxigênio/farmacologia , Pele , Linhagem Celular , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas Filagrinas , Regulação da Expressão Gênica , Gluconatos/metabolismo , Glicolatos/metabolismo , Humanos , Queratina-1/genética , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lactonas/metabolismo , Metaloproteinase 1 da Matriz/genética , Oxigênio/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , Proteínas S100/genética , Ácido Salicílico/metabolismo , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo
16.
Bioprocess Biosyst Eng ; 44(6): 1081-1091, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33527231

RESUMO

Microbial biorefinery is a promising route toward sustainable production of glycolic acid (GA), a valuable raw material for various industries. However, inherent microbial GA production has limited substrate consumption using either D-xylose or D-glucose as carbon catabolite repression (CCR) averts their co-utilization. To bypass CCR, a GA-producing strain using D-xylose via Dahms pathway was engineered to allow cellobiose uptake. Unlike glucose, cellobiose was assimilated and intracellularly degraded without repressing D-xylose uptake. The final GA-producing E. coli strain (CLGA8) has an overexpressed cellobiose phosphorylase (cep94A) from Saccharophagus degradans 2-40 and an activated glyoxylate shunt pathway. Expression of cep94A improved GA production reaching the maximum theoretical yield (0.51 g GA g-1 xylose), whereas activation of glyoxylate shunt pathway enabled GA production from cellobiose, which further increased the GA titer (2.25 g GA L-1). To date, this is the highest reported GA yield from D-xylose through Dahms pathway in an engineered E. coli with cellobiose as co-substrate.


Assuntos
Celobiose/metabolismo , Escherichia coli , Glicolatos/metabolismo , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Xilose/metabolismo , Celobiose/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Xilose/genética
17.
Invest Ophthalmol Vis Sci ; 62(1): 15, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33439228

RESUMO

Purpose: To identify tissue metabolomic profiles in biopsy specimens with IgG4-related ophthalmic disease (IgG4-ROD) and mucosa-associated lymphoid tissue (MALT) lymphoma and investigate their potential implication in the disease pathogenesis and biomarkers. Methods: We conducted a comprehensive analysis of the metabolomes and lipidomes of biopsy-proven IgG4-ROD (n = 22) and orbital MALT lymphoma (n = 21) specimens and matched adjacent microscopically normal adipose tissues using liquid chromatography time-of-flight mass spectrometry. The altered metabolomic profiles were visualized by heat map and principal component analysis. Metabolic pathway analysis was performed by Metabo Analyst 4.0 using differentially expressed metabolites. The diagnostic performance of the metabolic markers was evaluated using receiver operating characteristic curves. Machine learning algorithms were implemented by random forest using the R environment. Finally, an independent set of 18 IgG4-ROD and 17 orbital MALT lymphoma specimens were used to validate the identified biomarkers. Results: The principal component analysis showed a significant difference of both IgG4-ROD and orbital MALT lymphoma for biopsy specimens and controls. Interestingly, lesions in IgG4-ROD were uniquely enriched in arachidonic metabolism, whereas those in orbital MALT lymphoma were enriched in tricarboxylic acid cycle metabolism. We identified spermine as the best discriminator between IgG4-ROD and orbital MALT lymphoma, and the area under the receiver operating characteristic curve of the spermine to discriminate between the two diseases was 0.89 (95% confidence interval, 0.803-0.984). A random forest model incorporating a panel of five metabolites showed a high area under the receiver operating characteristic curve value of 0.983 (95% confidence interval, 0.981-0.984). The results of validation revealed that four tissue metabolites: N1,N12-diacetylspermine, spermine, malate, and glycolate, had statistically significant differences between IgG4-ROD and orbital MALT lymphoma with receiver operating characteristic values from 0.708 to 0.863. Conclusions: These data revealed the characteristic differences in metabolomic profiles between IgG4-ROD and orbital MALT lymphoma, which may be useful for developing new diagnostic biomarkers and elucidating the pathogenic mechanisms of these common orbital lymphoproliferative disorders.


Assuntos
Biomarcadores Tumorais/metabolismo , Imunoglobulina G/sangue , Linfoma de Zona Marginal Tipo Células B/metabolismo , Metaboloma/fisiologia , Doenças Orbitárias/metabolismo , Neoplasias Orbitárias/metabolismo , Paraproteinemias/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida de Alta Pressão , Feminino , Glicolatos/metabolismo , Humanos , Linfoma de Zona Marginal Tipo Células B/diagnóstico , Malatos/metabolismo , Masculino , Espectrometria de Massas , Metabolômica , Pessoa de Meia-Idade , Doenças Orbitárias/diagnóstico , Neoplasias Orbitárias/diagnóstico , Paraproteinemias/diagnóstico , Análise de Componente Principal , Curva ROC , Estudos Retrospectivos , Espermina/análogos & derivados , Espermina/metabolismo
18.
J Exp Bot ; 72(7): 2584-2599, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33483723

RESUMO

The photorespiratory pathway is highly compartmentalized. As such, metabolite shuttles between organelles are critical to ensure efficient photorespiratory carbon flux. Arabidopsis plastidic glycolate/glycerate translocator 1 (PLGG1) has been reported as a key chloroplastic glycolate/glycerate transporter. Two homologous genes, OsPLGG1a and OsPLGG1b, have been identified in the rice genome, although their distinct functions and relationships remain unknown. Herein, our analysis of exogenous expression in oocytes and yeast shows that both OsPLGG1a and OsPLGG1b have the ability to transport glycolate and glycerate. Furthermore, we demonstrate in planta that the perturbation of OsPLGG1a or OsPLGG1b expression leads to extensive accumulation of photorespiratory metabolites, especially glycolate and glycerate. Under ambient CO2 conditions, loss-of-function osplgg1a or osplgg1b mutant plants exhibited significant decreases in photosynthesis efficiency, starch accumulation, plant height, and crop productivity. These morphological defects were almost entirely recovered when the mutant plants were grown under elevated CO2 conditions. In contrast to osplgg1a, osplgg1b mutant alleles produced a mild photorespiratory phenotype and had reduced accumulation of photorespiratory metabolites. Subcellular localization analysis showed that OsPLGG1a and OsPLGG1b are located in the inner and outer membranes of the chloroplast envelope, respectively. In vitro and in vivo experiments revealed that OsPLGG1a and OsPLGG1b have a direct interaction. Our results indicate that both OsPLGG1a and OsPLGG1b are chloroplastic glycolate/glycerate transporters required for photorespiratory metabolism and plant growth, and that they may function as a singular complex.


Assuntos
Cloroplastos/metabolismo , Ácidos Glicéricos/metabolismo , Glicolatos/metabolismo , Oryza , Proteínas de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Oryza/genética , Fotossíntese , Plastídeos/metabolismo , Isoformas de Proteínas/metabolismo
19.
Microb Cell Fact ; 20(1): 22, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482812

RESUMO

BACKGROUND: A considerable challenge in the development of bioprocesses for producing chemicals and fuels has been the high cost of feedstocks relative to oil prices, making it difficult for these processes to compete with their conventional petrochemical counterparts. Hence, in the absence of high oil prices in the near future, there has been a shift in the industry to produce higher value compounds such as fragrances for cosmetics. Yet, there is still a need to address climate change and develop biotechnological approaches for producing large market, lower value chemicals and fuels. RESULTS: In this work, we study ethylene glycol (EG), a novel feedstock that we believe has promise to address this challenge. We engineer Escherichia coli (E. coli) to consume EG and examine glycolate production as a case study for chemical production. Using a combination of modeling and experimental studies, we identify oxygen concentration as an important metabolic valve in the assimilation and use of EG as a substrate. Two oxygen-based strategies are thus developed and tested in fed-batch bioreactors. Ultimately, the best glycolate production strategy employed a target respiratory quotient leading to the highest observed fermentation performance. With this strategy, a glycolate titer of 10.4 g/L was reached after 112 h of production time in a fed-batch bioreactor. Correspondingly, a yield of 0.8 g/g from EG and productivity of 0.1 g/L h were measured during the production stage. Our modeling and experimental results clearly suggest that oxygen concentration is an important factor in the assimilation and use of EG as a substrate. Finally, our use of metabolic modeling also sheds light on the intracellular distribution through central metabolism, implicating flux to 2-phosphoglycerate as the primary route for EG assimilation. CONCLUSION: Overall, our work suggests that EG could provide a renewable starting material for commercial biosynthesis of fuels and chemicals that may achieve economic parity with petrochemical feedstocks while sequestering carbon dioxide.


Assuntos
Reatores Biológicos/microbiologia , Escherichia coli/metabolismo , Etilenoglicol/metabolismo , Fermentação , Glicolatos/metabolismo , Engenharia Metabólica/métodos , Escherichia coli/genética , Formiatos/metabolismo , Glucose/metabolismo , Ácidos Glicéricos/metabolismo , Redes e Vias Metabólicas/genética , Oxigênio/metabolismo , Xilose/metabolismo
20.
Biotechnol Appl Biochem ; 68(4): 744-755, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32683722

RESUMO

Ethylene glycol and glycolic acid are bulk chemicals with a broad range of applications. The ethylene glycol and glycolic acid biosynthesis pathways have been produced by microorganisms and used as a biological route for their production. Unlike the methods that use xylose or glucose as carbon sources, xylonic acid was used as a carbon source to produce ethylene glycol and glycolic acid in this study. Amounts of 4.2 g/L of ethylene glycol and 0.7 g/L of glycolic acid were produced by a wild-type Escherichia coli W3110 within 10 H of cultivation with a substrate conversion ratio of 0.5 mol/mol. Furthermore, E. coli strains that produce solely ethylene glycol or glycolic acid were constructed. 10.3 g/L of glycolic acid was produced by E. coli ΔyqhD+aldA, and the achieved conversion ratio was 0.56 mol/mol. Similarly, the E. coli ΔaldA+yqhD produced 8.0 g/L of ethylene glycol with a conversion ratio of 0.71 mol/mol. Ethylene glycol and glycolic acid production by E. coli on xylonic acid as a carbon source provides new information on the biosynthesis pathway of these products and opens a novel way of biomass utilization.


Assuntos
Escherichia coli/metabolismo , Etilenoglicol/metabolismo , Glicolatos/metabolismo , Aldeído Oxirredutases/deficiência , Aldeído Oxirredutases/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA